CHAPTER 21: Nuclear Chemistry

Isotopes - atoms of the same element that differ in the number of neutrons

Writing Symbols for isotopes

\[A(\text{mass number})_X \]

Nucleon - nuclear particles (neutron or proton)

Radioactivity - the
spontaneous emission of particles and energy from atomic nuclei.

alpha emission
beta emission
gamma emission
positron emission
electron capture

<table>
<thead>
<tr>
<th>TABLE 21.1 Properties of Alpha, Beta, and Gamma Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Charge</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Relative penetrating power</td>
</tr>
<tr>
<td>Nature of radiation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Charge</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Relative penetrating power</td>
</tr>
<tr>
<td>Nature of radiation</td>
</tr>
</tbody>
</table>

Copyright © 2006 Pearson Prentice Hall, Inc.
Nuclear Reactions, transmutations, must be balanced with respect to both A and Z.

Consider each of the

<table>
<thead>
<tr>
<th>Particle</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>^1_0n</td>
</tr>
<tr>
<td>Proton</td>
<td>^1_1H or ^1_1p</td>
</tr>
<tr>
<td>Electron</td>
<td>$^0_{-1}\text{e}$</td>
</tr>
<tr>
<td>Alpha particle</td>
<td>^4_2He or $^4_2\alpha$</td>
</tr>
<tr>
<td>Beta particle</td>
<td>$^0_{-1}\text{e}$ or $^0_{-1}\beta$</td>
</tr>
<tr>
<td>Positron</td>
<td>$^0_{+1}\text{e}$</td>
</tr>
</tbody>
</table>
above decay routes

Belt of Stability - the stable isotopes in a plot of #neutrons vs Z
-too many neutrons, above the belt of stability: beta emission
-too few neutrons, below
the belt of stability: positron emission or electron capture

Stability of Atomic Nuclei
1. Z<20 Stable isotopes have equal numbers of protons and neutrons or just one extra neutron

2. Z>20 \#neutrons/#protons for stable isotopes becomes >1
3. Z>83 all isotopes are radioactive

4. Certain numbers of protons and neutrons have special stability (2, 8, 20, 28, 50, 82) (magic numbers)

<table>
<thead>
<tr>
<th>#prot.</th>
<th>#neut.</th>
<th>#isotopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td>even</td>
<td>157</td>
</tr>
<tr>
<td>even</td>
<td>odd</td>
<td>52</td>
</tr>
<tr>
<td>odd</td>
<td>even</td>
<td>50</td>
</tr>
<tr>
<td>odd</td>
<td>odd</td>
<td>5</td>
</tr>
</tbody>
</table>
Synthesis of elements

1919

\[^{14}\text{N} + ^{4}\text{He} \rightarrow ^{17}\text{O} + ^{1}\text{H} \]

Artificial Elements
Tc, Pm, and Z>92
$^{96}\text{Mo} + ^2\text{H} \rightarrow ^{97}\text{Tc} + ^1\text{n}$

$^{238}\text{U} + ^1\text{n} \rightarrow ^{239}\text{U} \rightarrow ^{239}\text{Np} + ^{-1}\text{e}$

$^{239}\text{Np} \rightarrow ^{239}\text{Pu} + ^{-1}\text{e}$

Uses of Radioisotopes

Dating

Medical

Diagnostic

Treatment

Tracer Studies

Radiochemical Dating - the use of naturally occurring
radioisotopes to determine the age of an object.

Rate of Radioactive decay is a first order process.

\[A \rightarrow B \]

rate = - \frac{d[A]}{dt} = kt

\[A = A_0 e^{-kt} = 10^{-kt/2.303} ; \]

\[t_{1/2} = 0.693/k \]
How many half-lives are required for the activity of a sample to decrease to 99.9% of its original value.

Estimate the age of a bone if it contains 1.63µg of 14C today and contained 14.2 µg when the animal was
alive. The half-live of ^{14}C is 5728 years.

Dating or rocks requires use of other isotopes ^{238}U (4.5×10^9) or ^{40}K (1.3×10^9) years.

A nucleus **ALWAYS** weighs less than the sum of its component particles. (Violation of the Law of Conservation of Mass ?)

mass defect = mass difference between a
nucleus and its component particles

Where did this mass go?
CONVERTED TO ENERGY

\[E = mc^2 \]

Nuclear Binding Energy - the energy required to separate a nucleus into its individual particles.

A plot of Nuclear Binding Energy/nucleon vs A indicates that the most
stable nuclei is ^{56}Fe

Fission - The splitting of very heavy nuclei to form lighter ones.
released neutrons cause a chain reaction

$$^{235}\text{U} + ^1\text{n} \rightarrow ^{142}\text{Ba} + ^{91}\text{Kr} + 3^1\text{n}$$

ENERGY!!! = 1.68×10^{10} kJ
This E can be used in warfare or for peaceful purposes
Use of Nuclear power
France ~78%
USA ~20%
China ~3%

Fusion - the combining of lighter nuclei to form larger ones. (SUN)

\[^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + ^1\text{n} \]

ENERGY!!! = 1.69×10^9 kJ

Biol. Effects of Radiation
Somatic
Genetic
Units of Radiation (amount vs exposure)

amount

curie, \(\text{Ci}=3.7 \times 10^{10} \text{dps(Bq)} \)
exposure
rad (rad abs dose)
1.00×10^{-2} J/kg (Gy=100 rad)
rem (rötogen equiv. man)
rem = rad x factor (RBE)
factor = 1 for γ and β
factor = 10 for α

Why is α so dangerous (hydroxyl radical)

#rem (short term) effect
0-25 little effect
25-50 dec. in wbc
100-200 sig. dec. in wbc
500rem 50% fatal